
Ergodicity and the Lorentz transformation of time-based probabilities

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1970 J. Phys. A: Gen. Phys. 3 113

(http://iopscience.iop.org/0022-3689/3/2/002)

Download details:

IP Address: 171.66.16.71

The article was downloaded on 02/06/2010 at 04:13

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0022-3689/3/2
http://iopscience.iop.org/0022-3689
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


Ergodicity and the Lorentz transformation of 
time-based probabilities 

P, T. LANDSBERG and K. A. JOHNS 
Department of Applied Mathematics and Mathematical Physics, University 
College, Cardiff 
MS.  received 2nd October 1969 

Abstract. One-particle systems and systems of non-interacting particles, free 
or confined to a container, are considered in this paper. The  systems are 
assumed to have discrete states available to them, but the particles constituting 
them are considered as point particles. I t  is shown that a necessary condition 
for the ergodicity of a confined system to be a Lorentz-invariant concept is 
the introduction of a new kind of ensemble whose systems can be in motion but 
are on average at rest in one and the same inertial frame. The discrete prob- 
abilities of statistical mechanics are shown to lack Lorentz invariance (contrary 
to accepted ideas), and a transformation formula is derived for them. 

1. Introduction 
In  equilibrium mechanics a usual procedure is to use ensembles of systems. 

Each system is a replica of the system under study and, though they are in different 
microscopic states and satisfy possibly different initial conditions, each system is 
subject to the same macroscopic conditions of constraint. These conditions may 
specify that the number of particles, the energy and the volume each lie in a narrow 
and prescribed range of values. Then the number of systems in the ensemble is 
assumed to be so large that the states of the system compatible with the constraints 
are well represented by the states of the systems of the ensemble. Hence one may 
average mechanical or other parameters of the system over the ensemble at any one 
time, and one will in this way arrive at average values of these parameters. These pro- 
cedures are now well known, and some of the ensembles are well studied. 

One need not think of the ensemble as a physical collection of systems or a 
fictitious collection of systems. It is quite adequate to fasten attention to the time- 
independent frequency or probability distribution to which an ensemble gives rise, 
while forgetting the collection of systems. Questions of the foundations of the 
concepts of probability theory, which are vaguely hinted at when speaking about 
statistical ensembles, might well be regarded as belonging to probability theory rather 
than statistical mechanics (Landsberg 1961, p. 388). In  this paper, however, it is 
convenient to use the more picturesque ensemble language. 

One can, alternatively, follow the behaviour of the equilibrium system under 
study for a long time and obtain the time average of the properties of interest. Which 
average yields the better representation of the thermodynamic properties of the 
system? The  point is that the ensemble averages are easier to handle and much more 
frequently used; but one often seeks to justify them by proving them to be approxi- 
mately equal to the time averages. This is the burden of the ergodic and quasi- 
ergodic hypotheses (e.g. Farquhar 1964), which are believed to be valid for most 
‘normal’ systems. 

Suppose one ergodic system and a corresponding ensemble are all at rest in an 
inertial frame I,,. In  this paper we ask if the system is still ergodic for an observer 
in a general frame I. Two possibilities must then be considered. (a) One lays it 
down as a requirement that a single system and a single ensemble, applicable to all 
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frames, must form the basis of the theorem. (b )  Alternatively, one allows one ensemble 
foy each frame. In  case (b )  the system under study will furnish certain time averages, 
and there is in principle no difficulty in setting up an ensemble with a frequency 
distribution which is in accord with time averages. In  such a case the ergodic theorem 
clearly holds ‘by construction’, and the only problem left is to find an independent 
justification for the ensemble probability distribution by considering the nature of the 
energy shell of the system under study in the general frame I. It is clear, therefore, 
that case ( a )  raises the new points brought into ergodic theory by special relativity in 
their clearest form. We show here that in this case the ergodic theorem can appear to 
fail in the sense that a system ergodic in I, is not ergodic in I. 

The ensemble of N o  systems (say) which are strictly at rest in I, yield certain 
probabilities Qjo  = ?Z30/No for the s ta tes j  of the system, i z j o  being the number of 
systems in statej. For an observer in an inertial frame I this ratio will be the same, 
except possibly for a permutation of the labels j. Hence there exists a labelling of 
states j such that 

Q ~ o  = Si* (1.i) 

I t  remains to show that the time-based probabilities violate this invariance. 
In  4 2 we obtain a Lorentz transformation of time-based probabilities. In  4 3 

we obtain expected (and clearly correct) results from this transformation. For clarity 
of exposition we deal with a special class of simple systems as specified in (ii) of 4 2. 
We shall use the concepts of confined and inclusive systems, as introduced earlier 
(Landsberg and Johns 1967). 

2. Basic results for time-based probabilities 
We enumerate the concepts required over and above those needed in non- 

relativistic mechanics : 
(i) In  each of the (enumerable) states i of a system A, it is free of all external 

interactions and thus possesses a definite energy-momentum four-vector 
E t  = (CP,, E,) for each inertial frame I. Interactions within the system which leave 
E,U unchanged can also bring about a change from state i. 

(ii) Interaction events, whether internal or external, can occur, and change 
one state (say i) of A to another state (sayj). These events are assumed to be separ- 
ated by time-like intervals which define times s t  in I for which A is in the state i. 

The assumption in (ii) ensures that the time-ordering of states is the same for all 
inertial frames. This would not be the case if some of the events j  were separated 
by space-like intervals. The  assumption (ii) is certainly fulfilled for a gas of one 
particle in a box. The results obtained from it also hold for any number of non- 
interacting particles in a box, since this can be considered to be simply a superposition 
of several of such one-particle systems. Once interactions are allowed, the usual 
difficulties of relativistic mechanics (Havas 1965) arise. Such situations are not 
considered here. 

(iii) Since the system (in state i) moves with constant velocity u t ( = c 2 P , / E 1 ) ,  
there is a flow of momentum in the direction of its motion at a rate u t .  P , .  Now if 
u1 is the same for all i (for example if the system is without external interactions), 
then the system conveys no momentum in the frame I, in which it is permanently 
at rest (U,, = 0). On the other hand, if ut varies with i, there is an external inter- 
action and an overall flow of momentum in every frame, even in the frame I, (which 
will always be taken to be the frame in which the system is on acerage at rest). This 
situation would arise in a confined system in which the pressure exerted by the con- 
tainer is the external interaction which produces the flow of momentum. 

(iv) All times s, for which the system is in state i during a long period of observa- 
tion T in I are summed to yield a total time t ,  for state i. The time-based probabilities 
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for states i in frame I are now defined to be 

so that 

Consider now frame I, in standard configuration with frame I (see figure l), so 
that with y = {1 - ( W / C ) ~ ) - ~ ' ~  

The space and time separations in Io between the events which define the space-time 
interval for which the system is in state i have been denoted by x i 0  and ti,. It is 
important that every such interval be time-like rather than space-like ; otherwise t i ,  
and hence II,, can appear negative for some frames of reference. In  other words, the 

Figure 1. 

separations must be determined by the motion of some point representative of the 
system as a whole (for example, the centre of gravity defined for any state i, and a 
selected frame I or I,), and not by the microscopic motion of an arbitrary particle. If 
this precaution is not taken, then even for a system of only two particles, xio/t i ,  may 
exceed c if the two terminal events are nearly simultaneous collisions of the particles 
with different points on the container wall. It is because attention is confined here to 
systems satisfying condition (ii) that one can put 

xi, = uioti, (2.3) 
where uio (in general non-zero although its time average is zero) is the velocity of 
the system. 

It follows from (2.2) and (2.3) that 

(2 -4) T = Y T o ;  

since the total displacement in I, is, by definition, zero 

Also 

This is the Lorentx transformation of time-based probabilities. 
The significance of (2.6) can be understood physically. Consider a state i in 

which P , ,  has a component parallel to w. More time is spent in this state when judged 
from frame I than when judged from I,. The  reason is that, considering a 
confined system, it is clearly moving with a component of its velocity parallel to the 
velocity of the box. Why equation (2.6) does not apply directly to an inclusive system 
is discussed at the end of 5 3. Conversely, if Pi, has a component antiparallel to w the 
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time for state i is shortened by going from J o  to I. Thus the whole distribution T I i o  is 
displaced in the direction of W .  We have already utilized this effect in a slightly 
different context (Landsberg and Johns 1967, 9 3). 

3. Main consequences of the Lorentz transformation of time-based 
probabilities 
(i) In  frame I, the mean velocity of the system is w (the velocity in I of Io). This 

can be demonstrated for the components of ut parallel to w ,  (uil,), and perpendicular 
to w, ( U ,  I); thus by use of (2.5) and (2.6) 

and 

(ii) The mean values of the energy and momentum in a general frame of reference 
(such as I) are expressed by 

( E )  = 2 IIiE, and ( P )  = 2 nip,. (3.3) 
t i 

These can be rewritten in terms of the quantities of Io by 

(iii) The  interaction with the walls will normally introduce a fluctuation in the 
energy and momentum of the system. Writing ( ... ) o  for an averaging procedure 
in which ITio is used, we shall restrict the systems to be considered by the following 
condition, which is incidentally satisfied, in virtue of (2.5), if Eio is the same for all i, 
namely 

We also put 
(3.6) 

(3.7) 
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The  results (3.4), (3.5) are therefore 

( E )  = Y{ (Eo >o + 2 rIto(w PiO)(W * %o)/C21 

( P  ) = (ric”{ (Eo >ow + 2 ( w  UlO) l-4OPiO}* 

(3 .8)  

(3.9) 

1 

i 

(iv) In  order to simplify these equations further the following result with be 
established for an equilibrium system under external pressure p :  

(3.10) 

where A is any unit vector. The  argument, which is related to the virial theorem, is 
as follows. Consider a surface element with area 6a and unit normal A fixed at rest 
in Io within the volume occupied by the system. From the macroscopic point of 
view the total momentum flowing across this surface in the A direction in time 6 t  
will be 

p 6a 6 t  6. 
Viewed statistically, the system as a whole moves back and forth in Io with various 

velocities uta, whilst the surface element which we consider always remains at rest 
in I,. Thus the volume of that part of the moving system which passes through Sa 
in time S t  is 6Vo = Sa A . Since the spatial distribution of the momentum is 
completely random within the system, the mean momentum passing through 6a in 
this time will be 

8 VO 6a(G . uto)StPto 
-Pt0 = 
VO VO 

The mean value over all states i of the rate of flow of momentum across 6a in time 
8t is therefore 

sa(;t . ulo)6tPi0 6a6t 
=- c l-IiOPtO(~ Uta). 

VI3 vo t 
c h o  

1 

Equating this with the previous result for this quantity, and cancelling anat, one 
obtains (3.10). 

(v) The  sum in (3.8), using (3.10), becomes with the choice of A given by w = w A  

c-zwzfi  . { c (Fi . Ui0)  rItoPto} = (w”c2)pV0. 

w c 6 * UiO) l-Itopzo = WPVO. 

2 

Similarly, the sum in (3.9) is 

t 

Hence the standard results 

( E )  = Y{ (Eo >o + (W/C)”VO) (3.11) 

e) = Y(@o)O+YPVo)(w/C2)  (3.12) 

are found. This acts as a confirmation of the general approach given here to time- 
based probabilities. 

It is clear from (3.10) that if uz0 = 0 for all states i, then p = 0. In  this case 
(3.11) and (3.12) reduce to the Lorentz transformation of the energy-momentum 
four-vector as is appropriate for a free or inclusive system. For the former of these, the 
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lack of any external interaction can be considered to be responsible for the absence of 
change in its velocity. However, it would be a mistake to apply such an interpretation 
also to an inclusive system (which, it will be recalled, is formed of two parts, namely 
the container and the confined system within it). The state of the inclusive system is 
determined by the state of this confined system rather than by any hypothesized 
behaviour of the container. It is, therefore, the velocity of the confined system which 
must be used in the transformation (2.6) when it is applied to an inclusive system. 
Since the terms in (3.11) and (3.12) are derived in part from the transformation (2.6), 
which cannot contain the variables of an inclusive system, it is clear that these equa- 
tions cannot represent the Lorentz transformation of the energy and momentum of an 
inclusive system. It is thus only for a free system that the result ui0 = 0 may be 
combined with equation (2.6) to give 

IT, = IT*,. 
Conventional ensembles as envisaged in (1.1) (i.e. ensembles whose systems are 

permanently at rest in a certain inertial frame) and time-based probabilities for free 
systems thus lead to Lorentz-invariant ergodicity. It is, however, the pressurized 
(inclusive or confined) system which represents the important case, and this requires 
further discussion (see 4 5 and Johns and Landsberg 1970). 

The  circumstance that the ITi transform yields the two additional terms in each 
of (3.4) and (3.5). One of these reduces to zero in virtue of (3.6). The  other (the last 
term in each of (3.4) and (3.5)) gives rise to the pV term, characteristic of confined 
systems. Thus the correct formulae (3.11) and (3.12) are given by the above treatment 
for confined systems only if the probability transforms. 

4. Comparison with a classical argument 
In  the preceding investigations it has been shown that, for the cases of one-particle 

systems and equilibrium systems of non-interacting particles, the ergodic theorem 
can only be said to hold if each observer in a different inertial frame is allowed to  
establish his own ensemble for the purpose of describing the system. The immediate 
reason for this is seen to be the Lorentz transformation of the time-based probabilities 
applicable to each of the discrete energy-momentum states i in which the system can 
exist. 

This transformation is in accordance with the strictly classical behaviour of the 
particle density f in phase space ( p  space) which is defined 

6n 
fE-. 

S W  

Here n is the expected number of particles within a phase-space element of volume 
dw. The fact thatf is Lorentz invariant is an indication that Sn and S w  are increased 
by the same factor under a Lorentz transformation. This may be proved as follows. 

Firstly the phase-space element may be defined by the canonical coordinates of 
position and momentum in frame I,. Thus its phase volume in I, is given by 

s u o  = ~ P , o ~ P , o ~ P , o ~ ~ , o ~ ~ , o ~ x 3 o .  
Under a Lorentz transformation of Sw, to frame I, the momentum coordinates 
contribute to the transformation a factor equal to the Jacobian determinant : 

where E ,  E, ,  are the energies of particles with momentap, po. The position coordinates 
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for the element, specified to be at rest in I,, introduce a Lorentz contraction factor 
l/y. Thus 

E 
6w = -s6Wo. 

Y E 0  

Secondly, the number Sn of particles in 6w (measured in frame I) depends on the 
time which each particle spends in 6w.  Hence Sn transforms in a way which depends 
on the velocity U = pc2/i., which is possessed by every particle in 6w (except for 
variations of small magnitude Sp). Thus if the proper time (i.e. the time in its own 
inertial frame) spent by a particle in Sw is ST, the measurement in frame I of this 
time will be 

Similarly, the time measured in I, is 

The ratio St/&, is therefore given by 

E 

EO 

The overall rate at which particles enter Sw is slower in I than in I, by a factor 
l / y !  owing to the Lorentz time dilation applied to the element dw at rest in I,. 
This factor also affects the number of particles in the system at any time. Thus 

6 t  1 
Sn = - - Sn, 

at, Y 
E 

(4.3) - - -  Sn,. 
Y E 0  

The Lorentz invariance of the quantity f, as defined by (4.1), follows at once 
from (4.2) and (4.3). Of particular consequence here is (4.3), which gives the expected 
number of particles in a phase-space element in frame I regardless of the phase volume 
of that element in I. It is the classical statistical mechanical analogue of the prob- 
ability ll, (equation (2.6)) of a system being in a discrete state, when no question of 
phase lrolume arises. Just as (3.11, 3.12) were derived from (2.6), so these equations 
can also be derived from (4.3). However, the Z in $ 3  would have to be replaced by 
an integral over dw with the distribution function f as a weighting factor. It is this 
argument only which appears already in the literature (Pathria 1966, NI01ler 1968, 
van Kampen 1969). The  result derived here in $ 5  2 and 3 is therefore an extension 
of the classical result. 

Since the velocities U and U ,  in this section are particle velocities rather than 
system velocities, there is no question of an inclusive system being described here. 
Instead, if U ,  = 0 in all regions of phase space occupied by the particles, we merely 
have the unrealistic situation of a system of completely motionless particles. 

5. Conclusions 
Suppose a given system S is described from an arbitrary inertial frame I, and is 

represented by an ensemble E,. We have introduced an inertial frame I, in which 
S is assumed to be on averuge at rest, while the systems constituting E, are assumed, 
in accordance with a usual convention, to be strictly at rest. Then 
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U , ,  = c 2P, , /E, ,  = 0 for the systems of E,, but U , ,  can be non-zero for S. Equa- 
tions (1.1) and (2.6) now show that one will find, in general, a lack of equality between 
time and ensemble-based probabilities in I, II, # (I,, even if II,, = Q,,. Ergodicity 
is then not a Lorentz-invariant concept. We replace this convention picture of 
ensembles, however, and instead require the restrictions on the motion of the system S 
to be the same as those imposed on the systems of E,. Either they are all strictly at 
rest in I,, or they are all constrained to be only on average at rest in I,. Here ‘rest’ 
or ‘motion’ can refer to the container (the ‘black box’) in the case of an inclusive 
system, and to the centre of mass in the case of a confined system. The  two cases 
U , ,  = 0, (u , , ) ,  = 0 will be discussed in turn, it being noted that the transformation 
properties of the probabilities (2.6) must be the same for confined and inclusive 
systems (see 4 3). 

(A) U , ,  = 0. If all quantities are interpreted as applying to a confined system, the 
pressure is zero by (3.10) and the transformation formulae (3.11) and (3.12) hold then 
only for the trivial case of a confined system at zero pressure. By equation (2.6) one 
finds Lorentz-invariant probabilities II and a Lorentz-invariant notion of ergodicity. 

(B) ( U , , ) ,  = 0. apar t  from differences due to different initial states, and the 
like, each system of the ensemble E, has statistically the same kind of behaviour in 
time as the system S. This was investigated in $ 2 .  An army of observers, all at rest 
in a frame I, make observations simultaneously in I on the systems of E,. These 
observations are not simultaneous in I,. From repeated sets of observations of this 
type the ensemble-based probabilities Q,  are derived. However, the time-based 
probability distribution of each system of the ensemble is displaced, as described at 
the end of $ 2, in passing from I, to I. As a consequence the Q’s will be displaced in 
just the way in which the IT’S are displaced. Thus ergodicity is a Lorentz-invariant 
notion also in this case. 

This conclusion depends, however, on an interpretation of ensembles which 
allows the individual systems to be in motion, while restricting them to be on average 
at rest in the frame in which the system S is also on average at rest. 

The main results of this paper are seen to be: 
(i) The  discrete probabilities of statistical mechanics are not Lorentz invariant 

( $ 5  2 and 3), a property which they share with the continuous classical distribution 
functions 6rz ( $  4). 

(ii) None the less, with a suitable interpretation concerning the notion of an 
ensemble the property of ergodicity can be arranged to be Lorentz invariant. 
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